Musical genre classification using support vector machines
نویسندگان
چکیده
Automatic musical genre classification is very useful for music indexing and retrieval. In this paper, an efficient and effective automatic musical genre classification approach is presented. A set of features is extracted and used to characterize music content. A multi-layer classifier based on support vector machines is applied to musical genre classification. Support vector machines are used to obtain the optimal class boundaries between different genres of music by learning from training data. Experimental results of multi-layer support vector machines illustrate good performance in musical genre classification and are more advantageous than traditional Euclidean distance based method and other statistic learning methods.
منابع مشابه
Wavelet-Based feature extraction for musical genre classification using support vector machines
Musical genre classification task falls into two major stages: feature extraction and classification. The latter implies a choice of a variety of machine leaning methods, as support vector machines, neural networks, etc. However, the former stage provides much more creativity in development of musical genre classification system and it plays crucial part in performance of the system as a whole....
متن کاملMusic Genre Classification Using Sparsity-Eager Support Vector Machines
Constructing robust categorical and typological classifiers, i.e., finding auditory constructs utilized for describing music categories, is an important problem in music genre classification. Supervised methods such as support vector machine (SVM) achieve state of the art performance for genre classification but suffer from over-fitting on training examples. In this paper, we introduce a superv...
متن کاملFactors in Automatic Musical Genre Classification of Audio Signals
Automatic musical genre classification is an important tool for organizing the large collections of music that are becoming available to the average user. In addition it provides a structured way of evaluating musical content features that doesn’t require extensive user studies. This paper provides a detailed comparative analysis of various factors affecting automatic classification performance...
متن کاملBeat Histogram Features for Rhythm-based Musical Genre Classification Using Multiple Novelty Functions
In this paper we present beat histogram features for multiple level rhythm description and evaluate them in a musical genre classification task. Audio features pertaining to various musical content categories and their related novelty functions are extracted as a basis for the creation of beat histograms. The proposed features capture not only amplitude, but also tonal and general spectral chan...
متن کاملNew Trends in Musical Genre Classification Using Optimum-Path Forest
Musical genre classification has been paramount in the last years, mainly in large multimedia datasets, in which new songs and genres can be added at every moment by anyone. In this context, we have seen the growing of musical recommendation systems, which can improve the benefits for several applications, such as social networks and collective musical libraries. In this work, we have introduce...
متن کامل